点击上方蓝字,关注我们


一、当前我国中小学人工智能教育
存在的问题
在国家政策的推动下,人工智能教育在我国发展迅速,北京、广州、深圳、天津等多个城市相继设立实验校并建设了多种形式的校本课程,积极推进中小学人工智能教育。但在具体实施的过程中还存在着一些问题。(一)课程定位较为模糊由于广大教育管理者和一线教师普遍缺乏对人工智能学科的清晰认识和深刻理解,容易将其与编程教育、创客教育或机器人教育等混淆。很多学校开设的人工智能课程,只是将原有的图形化编程课程或机器人课程进行简单修改,其中大量的课程内容和实践活动甚至完全一样。课程定位的模糊化导致了教学内容背离了人工智能知识体系,也难以体现人工智能学科本身的基本思想和重要概念,有悖于国家倡导中小学人工智能教育的初衷。(二)教学内容的难度分化较为严重有些学校的课程设计,将人工智能学科大量的抽象模型和理论直接引入课堂。然而,学生很难具备所需的认知和逻辑思维能力,因此易对课程产生抵触情绪,失去对人工智能知识的学习兴趣。有些学校的教学内容则只强调体验式学习,大量进行简单的实践活动。这类活动通常可以在课堂活动中吸引学生的关注和兴趣,但人工智能知识的学习却停留在浅层水平,学生很难在此过程中体会和学习到人工智能领域的重要知识和基本思想。(三)教师缺乏专业知识储备,缺少相应教学策略人工智能学科的专业性特点对中小学一线教师的教学设计能力提出了较高的要求:一方面教师需要具备一定的专业理论知识,另一方面需要理解和选取适当的人工智能应用案例。然而,多数教师没有进行过系统的人工智能课程学习,专业知识薄弱且缺乏将抽象理论融入教学的策略。二、中小学人工智能课程
设计的基本原则
上述问题造成了中小学人工智能课程设计与教学实施质量不高的现状。针对这些问题,国内外相关组织和学者对中小学人工智能课程的定位与教学内容进行了积极探索,并给出了中小学人工智能教育的关键概念。我们在关键概念的基础上提出了适用于中小学人工智能课程设计的基本原则,以帮助和指导一线教师更好地实施人工智能课程。(一)中小学人工智能教育的关键概念美国计算机科学教师协会(Computer Science Teachers Association, CSTA)联合相关行业组织成立中小学人工智能教育指导工作组,发布了美国中小学人工智能教育的指导意见。该指导意见将中小学人工智能教育的教学内容划分为五大关键概念:感知(perception)、表示与推理(representation and reasoning)、机器学习(machine learning)、自然交互(natural interaction)和社会影响(social impact)。具体而言,“感知”指人工智能技术可以使用各类传感器获取客观世界的信息,如利用GPS传感器获取经纬度信息。“表示与推理”指人工智能技术可以对客观世界的信息进行合理的数据化表示,并在此基础上进行各种逻辑推理,如基于知识图谱构建自动问答系统;“机器学习”指人工智能技术可以基于客观的世界信息进行学习,从而改善自我性能,如利用神经网络模型构建人脸识别系统;“自然交互”指人工智能技术可以帮助智能机器与人类开展自然交流,如利用自然语言处理技术构建智能音箱;“社会影响”指人工智能技术可能对人类社会产生正面或负面影响,如自动构建的推荐模型可能带有性别或种族偏好。(二)中小学人工智能课程设计的基本原则这些关键概念可以较好地帮助教师规范和组织中小学人工智能课程的内容,但如果缺乏课程设计的原则与策略, 教师仍难以科学合理地实施教学。因此,我们提出适用于我国现阶段中小学人工智能课程设计的三项基本原则。一是注重对人工智能领域基础性知识的掌握。人工智能领域涉及的知识面广,大量专业知识抽象且难以理解。同时,人工智能领域知识更新速度快,很多新的知识和模型尚未受到时间的检验。因此,在课程设计过程中应注重对本领域基础性知识的教学,而不应该盲目地“求全”或“求新”。二是强调不同主题内容间的横向联系。人工智能课程设计在突出不同基础性教学内容的同时,需要强调各项内容之间的横向联系,使学生能够逐步认识到不同教学内容间的内在和外在关系。同时,课程设计与实践内容需要由浅层到深层,从而培养学生的知识整合与创新迁移能力。三是有区分度和进阶性。学生是发展着的个体,随着年龄的增长,认知水平也会不断发展,不同个体间发展的速度和质量也不同,即使在相同学段也会存在认知能力的差异。因此,围绕已经确立的基础性教学内容,需要设计符合学生认知规律的进阶性教学目标和课程案例。这些教学目标和课程案例之间要有较好的区分度和承接关系。在课程的设计和实施过程中,还要尽可能进行逐层分解和分层讲授,并以现实生活中的实例进行关联和总结。三、基于课程设计基本原则的
案例开发与实践
人工智能学科知识点覆盖广、跨度大且应用性强,因此教师可以从生活中选取丰富有趣且具有实践意义的主题进行设计。基于中小学人工智能课程设计的三项基本原则,我们进行了相关示范性案例的设计与开发,以帮助教师理解和运用这些原则,从而更好地进行教学设计和开展课堂实践活动。(一)课程设计应注重对人工智能领域基础性知识的掌握我们首先以“自然语言处理中的情感分析”为例。本课程的教学目标是“初步了解自然语言处理以及情感分析技术的基本思想,能够运用情感分析技术设计方案以解决现实问题”。自然语言处理中的大多数模型和算法较为复杂,我们选择其中基础性的关键概念以及较容易实施的“情感分类”任务进行设计。在学生完成“情感分类”的任务中,教师介绍典型的自然语言处理步骤、基础模型与方法。同时,教师创设特定的任务情境,引导学生针对“线上课程评论”的情感色彩进行自动分类。课程设计的基本思路如图1所示。图2 基于课程评论的文本信息进行情感分类的体验式学习界面
以上对“自然语言处理中的情感分析”课程的设计,以自然语言处理的基本概念与简单易懂的文本情感分类任务作为教学重点,体现了“应注重对人工智能领域基础性知识的掌握”的课程设计原则,也可以作为教师在教学实践中的具体案例。(二)课程设计应强调不同主题内容间的横向联系我们以“智能垃圾分类”为例,将人工智能领域的不同技术和关键知识进行横向联系,设计完整的案例。当前,垃圾分类是社会关注的重点和难点问题。人工智能技术为垃圾自动分类提供了可能。然而,要完成一个完整的垃圾自动分类任务,需要利用多项人工智能技术和相关知识。图3给出了该课程设计的基本思路。四、总结与建议
本文介绍了中小学人工智能课程设计的三项基本原则及其示范性案例,为一线教学提供了具体的教学参考。希望以此抛砖引玉,让更多的一线教师进行体系化思考,设计出更多优秀的课程案例,从而促进人工智能课程在基础教育阶段的科学化、系统化、普及化。优质的中小学人工智能课程需要根据实际需求迭代开发和改进,同时还需要注意以下两点。一是根据实际情况灵活划分课时。由于不同地区、不同学校的人工智能课程开设情况不同,建议教师在利用课程案例开展教学时,根据学生的实际学习情况,灵活划分课时。如果学生较难掌握当前的教学内容,教师可以延长课时或简化内容;如果学生可以较快掌握教学内容,则可与下一阶段的教学内容适当重组或合并,从而满足学生的学习需求。二是根据实际情况灵活调整教学形式。以上课程设计目前主要以线上教学形式为主。教师在实施课程时,可以设计线上线下融合的课程,融入小组协作学习、线下讨论、课后调研等多种形式,从而进一步提升教学效果。人工智能课程并不拘泥于特定主题或特定的实践形式,主题选取应尽可能贴近生活,实践形式可以借助不同的人工智能服务平台或开源系统。(作者卢宇系北京师范大学教育学部副教授、博士生导师,未来教育高精尖创新中心人工智能实验室主任;张黎楠系北京师范大学教育技术学院研究生;夏梦雨系北京师范大学教育技术学院本科生;余胜泉系北京师范大学教育学部教授、博士生导师,未来教育高精尖创新中心执行主任)----END----
文章来源 | 《中小学数字化教学》2021年第4期
微信编辑 | 李中华 司君琪
责任编辑 | 牟艳娜
微信监制 | 赵满树
精彩回顾



