×

Python用LSTM长短期记忆神经网络对不稳定降雨量时间序列进行预测分析

hqy hqy 发表于2025-03-02 20:05:56 浏览21 评论0百度已收录

抢沙发发表评论

原文链接:http://tecdat.cn/?p=23544

下面是一个关于如何使用长短期记忆网络(LSTM)来拟合一个不平稳的时间序列的例子。

每年的降雨量数据可能是相当不平稳的。与温度不同,温度通常在四季中表现出明显的趋势,而雨量作为一个时间序列可能是相当不平稳的。夏季的降雨量与冬季的降雨量一样多是很常见的。

下面是某地区2020年11月降雨量的图解。

作为一个连续的神经网络,LSTM模型可以证明在解释时间序列的波动性方面有优势。

使用Ljung-Box检验,小于0.05的p值表明这个时间序列中的残差表现出随机模式,表明有明显的波动性。

>>> sm.stats.acorr_ljungbox(res.residlags=\[10\])

Ljung-Box检验

Dickey-Fuller 检验

数据操作和模型配置

该数据集由722个月的降雨量数据组成。

选择712个数据点用于训练和验证,即用于建立LSTM模型。然后,过去10个月的数据被用来作为测试数据,与LSTM模型的预测结果进行比较。

下面是数据集的一个片段。

然后形成一个数据集矩阵,将时间序列与过去的数值进行回归。

# 形成数据集矩阵

    for i in range(len(df)-previous-1

):

        a = df\[i:(i+previous), 0

\]

        dataX.append(a

)

        dataY.append(df\[i + previous0\])

然后用MinMaxScaler对数据进行标准化处理。

将前一个参数设置为120,训练和验证数据集就建立起来了。作为参考,previous = 120说明模型使用从t - 120到t - 1的过去值来预测时间t的雨量值。

前一个参数的选择要经过试验,但选择120个时间段是为了确保识别到时间序列的波动性或极端值。

# 训练和验证数据的划分train_size = int(len(df) * 0.8

)

val\_size = len(df) - train\_sizetrain, val = df\[0:train\_size,:\], df\[train\_size:len(df),:\]# 前期的数量previous = 120

然后,输入被转换为样本、时间步骤、特征的格式。

# 转换输入为\[样本、时间步骤、特征\]。np.reshape(X_train, (shape\[0\], 1, shape\[1\]))

模型训练和预测

该模型在100个历时中进行训练,并指定了712个批次的大小(等于训练和验证集中的数据点数量)。

# 生成LSTM网络

model = tf

.keras.Sequential()

# 列出历史中的所有数据

print(history.history.keys

())

# 总结准确度变化

plt.plot(history.history\[loss\])

下面是训练集与验证集的模型损失的关系图。

预测与实际降雨量的关系图也被生成。

点击标题查阅往期内容

在Python中使用LSTM和PyTorch进行时间序列预测

左右滑动查看更多

01

02

03

04

# 绘制所有预测图plt.plot(valpredPlot)

预测结果在平均方向准确性(MDA)、平均平方根误差(RMSE)和平均预测误差(MFE)的基础上与验证集进行比较。

 mda(Y_val, predictions)0.9090909090909091>>> mse = mean

\_squared\_error(Y_val, predictions)

>>> rmse = sqrt

(mse)

>>> forecast_error

>>> mean\_forecast\_error = np.mean(forecast_error)

MDA: 0.909

RMSE: 48.5

MFE: -1.77

针对测试数据进行预测

虽然验证集的结果相当可观,但只有将模型预测与测试(或未见过的)数据相比较,我们才能对LSTM模型的预测能力有合理的信心。

如前所述,过去10个月的降雨数据被用作测试集。然后,LSTM模型被用来预测未来10个月的情况,然后将预测结果与实际值进行比较。

至t-120的先前值被用来预测时间t的值。

# 测试(未见过的)预测np.array(\[tseries.iloctseries.iloc,t

获得的结果如下

MDA: 0.8

RMSE: 49.57

MFE: -6.94

过去10个月的平均降雨量为148.93毫米,预测精度显示出与验证集相似的性能,而且相对于整个测试集计算的平均降雨量而言,误差很低。

结论

在这个例子中,你已经看到:

如何准备用于LSTM模型的数据

构建一个LSTM模型

如何测试LSTM的预测准确性

使用LSTM对不稳定的时间序列进行建模的优势

本文摘选Python用LSTM长短期记忆神经网络对不稳定降雨量时间序列进行预测分析,点击“阅读原文”获取全文完整资料。

点击标题查阅往期内容

深度学习实现自编码器Autoencoder神经网络异常检测心电图ECG时间序列spss modeler用决策树神经网络预测ST的股票Python中TensorFlow的长短期记忆神经网络(LSTM)、指数移动平均法预测股票市场和可视化RNN循环神经网络 、LSTM长短期记忆网络实现时间序列长期利率预测结合新冠疫情COVID-19股票价格预测:ARIMA,KNN和神经网络时间序列分析深度学习:Keras使用神经网络进行简单文本分类分析新闻组数据用PyTorch机器学习神经网络分类预测银行客户流失模型PYTHON用LSTM长短期记忆神经网络的参数优化方法预测时间序列洗发水销售数据Python用Keras神经网络序列模型回归拟合预测、准确度检查和结果可视化R语言深度学习卷积神经网络 (CNN)对 CIFAR 图像进行分类:训练与结果评估可视化深度学习:Keras使用神经网络进行简单文本分类分析新闻组数据Python用LSTM长短期记忆神经网络对不稳定降雨量时间序列进行预测分析R语言深度学习Keras循环神经网络(RNN)模型预测多输出变量时间序列R语言KERAS用RNN、双向RNNS递归神经网络、LSTM分析预测温度时间序列、 IMDB电影评分情感Python用Keras神经网络序列模型回归拟合预测、准确度检查和结果可视化Python用LSTM长短期记忆神经网络对不稳定降雨量时间序列进行预测分析R语言中的神经网络预测时间序列:多层感知器(MLP)和极限学习机(ELM)数据分析报告R语言深度学习:用keras神经网络回归模型预测时间序列数据Matlab用深度学习长短期记忆(LSTM)神经网络对文本数据进行分类R语言KERAS深度学习CNN卷积神经网络分类识别手写数字图像数据(MNIST)MATLAB中用BP神经网络预测人体脂肪百分比数据Python中用PyTorch机器学习神经网络分类预测银行客户流失模型R语言实现CNN(卷积神经网络)模型进行回归数据分析SAS使用鸢尾花(iris)数据集训练人工神经网络(ANN)模型【视频】R语言实现CNN(卷积神经网络)模型进行回归数据分析Python使用神经网络进行简单文本分类R语言用神经网络改进Nelson-Siegel模型拟合收益率曲线分析R语言基于递归神经网络RNN的温度时间序列预测R语言神经网络模型预测车辆数量时间序列R语言中的BP神经网络模型分析学生成绩matlab使用长短期记忆(LSTM)神经网络对序列数据进行分类R语言实现拟合神经网络预测和结果可视化用R语言实现神经网络预测股票实例使用PYTHON中KERAS的LSTM递归神经网络进行时间序列预测python用于NLP的seq2seq模型实例:用Keras实现神经网络机器翻译用于NLP的Python:使用Keras的多标签文本LSTM神经网络分类

欲获取全文文件,请点击左下角“阅读原文”。

欲获取全文文件,请点击左下角“阅读原文”。