本文将介绍机器学习、深度学习中分类与回归常用的几种损失函数。
机器学习中的监督学习本质上是给定一系列训练样本 ,尝试学习 的映射关系,使得给定一个 ,即便这个 不在训练样本中,也能够得到尽量接近真实 的输出 。而损失函数(Loss Function)则是这个过程中关键的一个组成部分,用来衡量模型的输出 与真实的 之间的差距,给模型的优化指明方向。本文将介绍机器学习、深度学习中分类与回归常用的几种损失函数,包括均方差损失 Mean Squared Loss、平均绝对误差损失 Mean Absolute Error Loss、Huber Loss、分位数损失 Quantile Loss、交叉熵损失函数 Cross Entropy Loss、Hinge 损失 Hinge Loss。主要介绍各种损失函数的基本形式、原理、特点等方面。目录
前言
均方差损失 Mean Squared Error Loss
平均绝对误差损失 Mean Absolute Error Loss
Huber Loss
分位数损失 Quantile Loss
交叉熵损失 Cross Entropy Loss
合页损失 Hinge Loss
总结
前言
在正文开始之前,先说下关于 Loss Function、Cost Function 和 Objective Function 的区别和联系。在机器学习的语境下这三个术语经常被交叉使用。
- 损失函数 Loss Function 通常是针对单个训练样本而言,给定一个模型输出 和一个真实 ,损失函数输出一个实值损失 - 代价函数 Cost Function 通常是针对整个训练集(或者在使用 mini-batch gradient descent 时一个 mini-batch)的总损失 - 目标函数 Objective Function 是一个更通用的术语,表示任意希望被优化的函数,用于机器学习领域和非机器学习领域(比如运筹优化)一句话总结三者的关系就是:A loss function is a part of a cost function which is a type of an objective function.
由于损失函数和代价函数只是在针对样本集上有区别,因此在本文中统一使用了损失函数这个术语,但下文的相关公式实际上采用的是代价函数 Cost Function 的形式,请读者自行留意。
均方差损失 Mean Squared Error Loss
基本形式与原理
均方差 Mean Squared Error (MSE) 损失是机器学习、深度学习回归任务中最常用的一种损失函数,也称为 L2 Loss。其基本形式如下
背后的假设
实际上在一定的假设下,我们可以使用最大化似然得到均方差损失的形式。假设模型预测与真实值之间的误差服从标准高斯分布( ),则给定一个 模型输出真实值 的概率为进一步我们假设数据集中 N 个样本点之间相互独立,则给定所有 输出所有真实值 的概率,即似然 Likelihood,为所有 的累乘
通常为了计算方便,我们通常最大化对数似然 Log-Likelihood
去掉与 无关的第一项,然后转化为最小化负对数似然 Negative Log-Likelihood
平均绝对误差损失 Mean Absolute Error Loss
基本形式与原理
平均绝对误差 Mean Absolute Error (MAE) 是另一类常用的损失函数,也称为 L1 Loss。其基本形式如下同样的我们可以对这个损失函数进行可视化如下图,MAE 损失的最小值为 0(当预测等于真实值时),最大值为无穷大。可以看到随着预测与真实值绝对误差 的增加,MAE 损失呈线性增长

背后的假设
同样的我们可以在一定的假设下通过最大化似然得到 MAE 损失的形式,假设模型预测与真实值之间的误差服从拉普拉斯分布 Laplace distribution( ),则给定一个 模型输出真实值 的概率为MAE 与 MSE 区别
MAE 和 MSE 作为损失函数的主要区别是:MSE 损失相比 MAE 通常可以更快地收敛,但 MAE 损失对于 outlier 更加健壮,即更加不易受到 outlier 影响。MSE 通常比 MAE 可以更快地收敛。当使用梯度下降算法时,MSE 损失的梯度为 ,而 MAE 损失的梯度为 ,即 MSE 的梯度的 scale 会随误差大小变化,而 MAE 的梯度的 scale 则一直保持为 1,即便在绝对误差 很小的时候 MAE 的梯度 scale 也同样为 1,这实际上是非常不利于模型的训练的。当然你可以通过在训练过程中动态调整学习率缓解这个问题,但是总的来说,损失函数梯度之间的差异导致了 MSE 在大部分时候比 MAE 收敛地更快。这个也是 MSE 更为流行的原因。MAE 对于 outlier 更加 robust。我们可以从两个角度来理解这一点:第一个角度是直观地理解,下图是 MAE 和 MSE 损失画到同一张图里面,由于MAE 损失与绝对误差之间是线性关系,MSE 损失与误差是平方关系,当误差非常大的时候,MSE 损失会远远大于 MAE 损失。因此当数据中出现一个误差非常大的 outlier 时,MSE 会产生一个非常大的损失,对模型的训练会产生较大的影响。

Huber Loss
上文我们分别介绍了 MSE 和 MAE 损失以及各自的优缺点,MSE 损失收敛快但容易受 outlier 影响,MAE 对 outlier 更加健壮但是收敛慢,Huber Loss 则是一种将 MSE 与 MAE 结合起来,取两者优点的损失函数,也被称作 Smooth Mean Absolute Error Loss 。其原理很简单,就是在误差接近 0 时使用 MSE,误差较大时使用 MAE,公式为
Huber Loss 的特点
Huber Loss 结合了 MSE 和 MAE 损失,在误差接近 0 时使用 MSE,使损失函数可导并且梯度更加稳定;在误差较大时使用 MAE 可以降低 outlier 的影响,使训练对 outlier 更加健壮。缺点是需要额外地设置一个 超参数。分位数损失 Quantile Loss
分位数回归 Quantile Regression 是一类在实际应用中非常有用的回归算法,通常的回归算法是拟合目标值的期望或者中位数,而分位数回归可以通过给定不同的分位点,拟合目标值的不同分位数。例如我们可以分别拟合出多个分位点,得到一个置信区间,如下图所示(图片来自笔者的一个分位数回归代码 demo Quantile Regression Demo)

分位数回归是通过使用分位数损失 Quantile Loss 来实现这一点的,分位数损失形式如下,式中的 r 分位数系数。

交叉熵损失 Cross Entropy Loss
上文介绍的几种损失函数都是适用于回归问题损失函数,对于分类问题,最常用的损失函数是交叉熵损失函数 Cross Entropy Loss。
二分类
考虑二分类,在二分类中我们通常使用 Sigmoid 函数将模型的输出压缩到 (0, 1) 区间内 ,用来代表给定输入 ,模型判断为正类的概率。由于只有正负两类,因此同时也得到了负类的概率。
多分类
在多分类的任务中,交叉熵损失函数的推导思路和二分类是一样的,变化的地方是真实值 现在是一个 One-hot 向量,同时模型输出的压缩由原来的 Sigmoid 函数换成 Softmax 函数。Softmax 函数将每个维度的输出范围都限定在 之间,同时所有维度的输出和为 1,用于表示一个概率分布。Cross Entropy is good. But WHY?
分类中为什么不用均方差损失?上文在介绍均方差损失的时候讲到实际上均方差损失假设了误差服从高斯分布,在分类任务下这个假设没办法被满足,因此效果会很差。为什么是交叉熵损失呢?有两个角度可以解释这个事情,一个角度从最大似然的角度,也就是我们上面的推导;另一个角度是可以用信息论来解释交叉熵损失:
假设对于样本 存在一个最优分布 真实地表明了这个样本属于各个类别的概率,那么我们希望模型的输出 尽可能地逼近这个最优分布,在信息论中,我们可以使用 KL 散度 Kullback–Leibler Divergence 来衡量两个分布的相似性。给定分布 和分布 , 两者的 KL 散度公式如下可以看到通过最小化交叉熵的角度推导出来的结果和使用最大 化似然得到的结果是一致的。
合页损失 Hinge Loss
合页损失 Hinge Loss 是另外一种二分类损失函数,适用于 maximum-margin 的分类,支持向量机 Support Vector Machine (SVM) 模型的损失函数本质上就是 Hinge Loss + L2 正则化。合页损失的公式如下

总结
本文针对机器学习中最常用的几种损失函数进行相关介绍,首先是适用于回归的均方差损失 Mean Squared Loss、平均绝对误差损失 Mean Absolute Error Loss,两者的区别以及两者相结合得到的 Huber Loss,接着是应用于分位数回归的分位数损失 Quantile Loss,表明了平均绝对误差损失实际上是分位数损失的一种特例,在分类场景下,本文讨论了最常用的交叉熵损失函数 Cross Entropy Loss,包括二分类和多分类下的形式,并从信息论的角度解释了交叉熵损失函数,最后简单介绍了应用于 SVM 中的 Hinge 损失 Hinge Loss。本文相关的可视化代码在 这里。
受限于时间,本文还有其他许多损失函数没有提及,比如应用于 Adaboost 模型中的指数损失 Exponential Loss,0-1 损失函数等。另外通常在损失函数中还会有正则项(L1/L2 正则),这些正则项作为损失函数的一部分,通过约束参数的绝对值大小以及增加参数稀疏性来降低模型的复杂度,防止模型过拟合,这部分内容在本文中也没有详细展开。读者有兴趣可以查阅相关的资料进一步了解。
编辑:王菁校对:林亦霖