AI
银之杰:公司在图像识别、自然语言处理等方向有AI技术积累这么多人都在选古井贡酒年份原浆5,它究竟有何魅力?
hqy 发表于2025-02-27 浏览19 评论0
金融界2月13日消息,有投资者在互动平台向银之杰提问:请问贵公司是否有涉及AI智能体的业务或可用于AI智能体的产品?
公司回答表示:公司在人工智能方面的积累主要在图像识别和自然语言处理方向。公司的印章识别系统和智能印控机产品,集成了印章识别算法、OCR、机器视觉、神经网络、文件自动比对等智能化技术;公司投资的智能语音技术公司(百可录)实现了AI技术在银行智能语音坐席场景的应用;公司也是百度文心一言首批合作伙伴。公司持续关注并积极探索人工智能的发展和应用。

AI
探索深度学习与自然语言处理:常见的微调策略揭秘深海中的“奇特”生物为何形态各异?
hqy 发表于2025-02-27 浏览11 评论0
在深度学习与自然语言处理领域,常见的微调方法主要包含以下几种:
Fine-tuning(全参数微调):作为最传统的微调方法,它需要对预训练模型中的所有参数进行更新,以此来适应特定任务。该方法通常能取得最佳性能,不过其计算成本相对较高。 Prompt-tuning(提示微调):此方法通过精心设计特定的输入提示(prompts),而非修改模型权重,来使模型适应下游任务。这样能使模型在计算成本较低的情况下适应各类任务。 Parameter-efficient fine-tuning(参数高效微调):这组方法主要是通过仅训练模型参数的一个子集或者新添加的一组参数,以此减少所需的参数数量以及计算资源。对于资源有限的环境而言,这些技术意义重大。 Adapter Training(适配器训练):适配器是一种添加到预训练模型中的小型神经网络,用于针对特定任务进行微调。这些适配器仅占原始模型大小的一小部分,从而使得训练速度更快,内存需求也更低。 Progressive Shrinking(渐进收缩):该技术在微调过程中会逐渐减小预训练模型的大小,进而产生比从头开始训练的模型性能更优的小型模型。 Prefix Tuning(前缀微调):这种方法涉及学习特定任务的连续提示,并在推理过程中将其添加在输入之前。通过对这个连续提示进行优化,模型能够在不修改底层模型参数的情况下适应特定任务。 P-Tuning:此方法涉及对可学习的“提示记号”参数进行训练,这些参数与输入序列相连。这些提示记号具有任务特异性,在微调过程中对其进行优化,从而使模型在保持原始模型参数不变的情况下,在新任务上有良好的表现。
AI
探秘深度学习与自然语言处理:常见的微调策略全解析!哪吒2:申公豹经典语录:句句封神,哪句让你瞬间破防?
hqy 发表于2025-02-27 浏览6 评论0
在深度学习和自然语言处理领域,常见的微调方法主要有以下几种:
全参数微调(Fine-tuning):这是最为传统的微调方式。它需要对预训练模型中的所有参数进行更新,以此来适应特定的任务。这种方法往往能够取得最佳性能,不过其计算成本相对较高。 提示微调(Prompt-tuning):该方法通过精心设计特定的输入提示(prompts),而不是去修改模型的权重,来使模型适应下游任务。这样能让模型在计算成本较低的情况下,适应各种各样的任务。 参数高效微调(Parameter-efficient fine-tuning):这组方法的核心在于,只对模型参数的一个子集或者新添加的一组参数进行训练,目的是减少所需的参数数量以及计算资源。对于那些资源有限的环境而言,这些技术有着至关重要的意义。 适配器训练(Adapter Training):适配器是一种添加到预训练模型中的小型神经网络,主要用于特定任务的微调。这些适配器仅仅占据原始模型大小的一小部分,所以训练速度更快,而且内存需求也更低。 渐进收缩(Progressive Shrinking):这种技术是在微调期间,逐渐减小预训练模型的规模,最终得到一个比从头开始训练性能更好的小型模型。 前缀微调(Prefix Tuning):它涉及学习特定任务的连续提示,并在推理过程中将其添加到输入之前。通过对这个连续提示进行优化,模型就能适应特定任务,且无需修改底层模型参数。 P-Tuning:主要涉及对可学习的“提示记号”参数进行训练,这些参数会与输入序列相连接。这些提示记号是特定于任务的,在微调过程中会被优化,使得模型能够在保持原始模型参数不变的情况下,在新任务上有良好的表现。AI
什么是语言?什么是自然语言?
hqy 发表于2025-02-27 浏览10 评论0
什么是自然语言?
什么是自然语言?以语音为物质外壳,由词汇和语法两部分组成的符号系统。文字和声音是语言的两种属性。语言是人类交际的工具,是人类思维的载体;人类历史上以语言文字形式记载和流传的知识占人类知识总量的80%以上。是约定俗成的,有别于人工语言,比如Java、C++等程序设计语言。AI
循环神经网络(RNN):如何处理自然语言?
hqy 发表于2025-02-27 浏览13 评论0
上文介绍了卷积神经网络(CNN)的基础概念,今天我们来介绍可以处理自然语言等序列数据的循环神经网络。
AI
自然语言处理最好的入门书
hqy 发表于2025-02-27 浏览20 评论0
自然语言处理是人工智能领域的一个重要的研究方向,是计算机科学与语言学的交叉学科。随着互联网的快速发展,网络文本尤其是用户生成的文本呈爆炸性增长,为自然语言处理带来了巨大的应用需求。但是由于自然语言具有歧义性、动态性和非规范性,同时语言理解通常需要丰富的知识和一定的推理能力,为自然语言处理带来了极大的挑战。
AI
自然语言处理技术(NLP)
hqy 发表于2025-02-27 浏览11 评论0
自然语言处理技术(Natural Language Processing,简称NLP)是一种涉及人类和计算机用自然语言进行交互的技术,它主要研究如何让计算机能够理解、分析、处理、生成自然语言,并根据语言执行相关的任务。
AI
7.26蚂蚁新村今日答案:“自然语言处理工程师”中“自然语言”指
hqy 发表于2025-02-27 浏览10 评论0
AI
Ai自然语言处理到底在做什么?我们日常接触的哪些应用用到了它?
hqy 发表于2025-02-27 浏览11 评论0
在科技飞速发展的今天,人工智能的浪潮正席卷而来,而自然语言处理作为其中的关键领域,正悄然改变着我们的生活。或许你对这个术语感到有些陌生,但实际上,它早已融入我们日常的点点滴滴,今天就来为你全面解析。
AI
36氪研究院 | 2024年中国人工智能之自然语言处理(NLP)技术洞察
hqy 发表于2025-02-27 浏览26 评论0
1、行业定义及发展历程
自然语言处理(NLP)技术是人工智能的一个分支领域,专注于计算机与人类自然语言间的交互研究,旨在使计算机具备理解、生成与处理人类语言(涵盖文本与语音形式)的能力。NLP作为一种集计算机科学、人工智能和语言学于一体的交叉技术,具有多样化、跨学科性、复杂性、交互性和不断变化性的特点。